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Abstract: Energy budget estimates of equilibrium climate sensitivity (ECS) and transient 

climate response (TCR) are derived based on the best estimates and uncertainty ranges for 

forcing provided in the IPCC Fifth Assessment Scientific Report (AR5). Recent revisions to 

greenhouse gas forcing and post-1990 ozone and aerosol forcing estimates are incorporated 

and the forcing data extended from 2011 to 2016. Reflecting recent evidence against strong 

aerosol forcing, its AR5 uncertainty lower bound is increased slightly. Using a 1869–1882 

base period and a 2007−2016 final period, which are well-matched for volcanic activity and 

influence from internal variability, medians are derived for ECS of 1.50 K (5−95%: 1.05−2.45 

K) and for TCR of 1.20 K (5−95%: 0.9−1.7 K). These estimates both have much lower upper 

bounds than those from a predecessor study using AR5 data ending in 2011. Using infilled, 

globally-complete temperature data gives slightly higher estimates; a median of 1.66 K for 

ECS (5−95%: 1.15−2.7 K) and 1.33 K for TCR (5−95%:1.0−1.90 K). These ECS estimates 

reflect climate feedbacks over the historical period, assumed time-invariant. Allowing for 

possible time-varying climate feedbacks increases the median ECS estimate to 1.76 K 

(5−95%: 1.2−3.1 K), using infilled temperature data. Possible biases from non-unit forcing 

efficacy, temperature estimation issues and variability in sea-surface temperature change 

patterns are examined and found to be minor when using globally-complete temperature data. 

These results imply that high ECS and TCR values derived from a majority of CMIP5 climate 

models are inconsistent with observed warming during the historical period. 
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1.    Introduction 

There has been considerable scientific investigation of the magnitude of the warming of 

Earth’s climate from changes in atmospheric carbon dioxide (CO2) concentration. Two 

standard metrics summarize the sensitivity of global surface temperature to an externally 

imposed radiative forcing. Equilibrium climate sensitivity (ECS) represents the equilibrium 

change in surface temperature to a doubling of atmospheric CO2 concentration. Transient 

climate response (TCR), a shorter-term measure over 70 years, represents warming at the time 

CO2 concentration has doubled when it is increased by 1% a year.  

For over thirty years, climate scientists have presented a likely range for ECS that has 

hardly changed. The ECS range 1.5−4.5 K in 1979 (Charney 1979) is unchanged in the 2013 

Fifth Assessment Scientific Report (AR5) from the IPCC. AR5 did not provide a best 

estimate value for ECS, stating (Summary for Policymakers D.2): "No best estimate for 

equilibrium climate sensitivity can now be given because of a lack of agreement on values 

across assessed lines of evidence". 

At the heart of the difficulty surrounding the values of ECS and TCR is the substantial 

difference between values derived from climate models versus values derived from changes 

over the historical instrumental data record using energy budget models. The median ECS 

given in AR5 for current generation (CMIP5) atmosphere-ocean global climate models 

(AOGCMs) was 3.2 K, versus 2.0 K for the median values from historical-period energy 

budget based studies cited by AR5. 

Subsequently Lewis and Curry (2015; hereafter LC15) derived, using observationally-

based energy budget methodology, a median ECS estimate of 1.6 K from AR5's global 

forcing and heat content estimate time series, which made the discrepancy with ECS values 

derived from AOGCMs even larger. LC15 also derived a median TCR value of 1.3 K, well 

below the 1.8 K median TCR for CMIP5 models in AR5. 

Considerable effort has been expended in attempts to reconcile the observationally-

based ECS values with values determined using climate models. Most of these efforts have 

focused on arguments that the methodologies used in the energy balance model 

determinations result in ECS and/or TCR estimates that are biased low (e.g., Marvel et al. 

2016; Richardson et al. 2016; Armour 2017). 

Using a standard global energy budget approach, this paper seeks to clarify the 

implications for climate sensitivity (both ECS and TCR) of incorporating the most up-to-date 

surface temperature, forcing and ocean heat content data. Forcing and heat content estimates 

given in AR5 are extended from 2011 to 2016, with recent revisions to greenhouse gas 

forcing-concentration relationships and post-1990 tropospheric ozone and aerosol forcing 

changes applied and a new ocean heat content dataset incorporated. This paper also addresses 

a range of concerns that have been raised regarding using energy balance models to determine 
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climate sensitivity: variability in patterns of sea-surface temperature change, non-unit forcing 

efficacy, temperature estimation issues and time-varying climate feedbacks. 

The paper is structured as follows. The global energy budget approach is discussed in 

Section 2. Section 3 deals with data sources and uncertainties, Section 4 with choice of base 

and final periods, and methods are described in Section 5. Section 6 sets out the results, which 

are discussed in Section 7. Section 8 concludes. 

2.    Global energy budget approach 

A general energy budget framework has been widely used in the estimation and analysis of 

climate sensitivity, such as by Armour and Roe (2011) and Roe and Armour (2011), and in 

AR5 (Bindoff et al. 2014). Estimation of climate sensitivity from changes in conditions 

between periods early and late in the industrial era has been developed by Gregory et al. 

(2002), Otto et al. (2013), Masters (2014), LC15 and other papers. Advantages of the energy 

budget approach are described by LC15; relative to less simple models that use zonally, 

hemispherically or land-ocean resolved data, the energy budget approach includes improved 

quantification of and robustness against uncertainties through use only of global mean data. 

Generally, complex models are ill-suited to observationally-based climate sensitivity 

estimation since it may not be practicable to produce, by perturbing their internal parameters, 

a simulated climate system that is adequately consistent with observed variables. An  

increasingly popular alternative is the 'emergent constraint' approach: identifying 

observationally-constrainable metrics in the current climate which correlate with ECS in 

complex models. However, it has been shown for CMIP5 models that all such metrics are 

likely only to constrain shortwave cloud feedback, and not other factors controlling their ECS 

(Qu et al. 2017). The ability in a state-of-the-art complex model to engineer ECS over a wide 

range (largely arising from differing shortwave cloud feedback) by varying the formulation of 

convective precipitation, without being able to find a clear observational constraint that favors 

one version over the others (Zhao et al. 2016), casts further doubt on the emergent constraint 

approach.  

Using a simple rather than a complex climate model also has the important advantage 

of transparency and reproducibility. What determines ECS and TCR in a complex model is 

obscure, and their estimation is affected by internal variability. The energy budget framework 

provides an extremely simple physically-based climate model that, given the assumptions 

made, follows directly from energy conservation. It has only one uncertain parameter, λ, 

which can be directly derived from estimates of changes in historical global mean surface 

temperature (hereafter 'surface temperature'), forcing and heat uptake rate. 

The main assumption made by the energy budget model concerns the radiative 

response ΔR to a change in radiative forcing ΔF that alters positively the Earth's net 

downwards top-of-atmosphere (TOA) radiative imbalance N. The assumption is that, in 

temporal mean terms, ΔR  – the change in net outgoing radiation resulting from the change in 
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the state of the climate system caused by the forcing imposition – is linearly proportional to 

the forcing-induced change in surface temperature ΔT. Mathematically,  

 RR T µ      (1) 

with λ – the climate feedback parameter, representing the increase in net outgoing energy flux 

per degree of surface warming – constant, and µR a random zero-mean residual term 

representing internal fluctuations in the system unrelated to fluctuations in T. Together µR and 

fluctuations in R arising, through its relation to T, from internal variability in T – which will 

have a different signature –represent the internal variability in R. A constant λ implies it is 

independent of T, other aspects of the climate state, the magnitude and composition of ΔF, 

and the time since forcing was applied. 

By conservation of energy, ΔN = ΔF − ΔR . Therefore, in temporal mean terms, 

substituting using (1) 

 ( ) /F N T      (2) 

It follows from (2) that, designating the radiative forcing from a doubling of atmospheric CO2 

concentration as 2 CO2F  , once equilibrium is restored following such a doubling (implying 

ΔN=0),  

 2 CO2 / ECSF   (3) 

Hence, substituting in (2), in general  

 
2 CO2ECS

T
F

F N





 
 (4) 

with the CO2 forcing component of F calculated on a basis consistent with that used for 

2 CO2F  . Here, N is conventionally regarded and measured as the rate of planetary heat uptake, 

which provides identical ΔN values to measuring its net downwards radiative imbalance. 

Equation (4) assumes that T  is entirely externally forced, but it does not imply a linear 

relationship between ΔN and ΔT, unlike the 'kappa' model (Gregory and Forster 2008).   

We apply (4) to estimate ECS based on changes in mean values of estimates for T, F 

and N between well separated, fairly long base and final periods.  

Being inferred from transient changes, ECS as defined in (4) is an effective climate 

sensitivity that embodies the assumption of a constant linear climate feedback parameter λ.  

Equilibrium climate sensitivity, by contrast, requires the atmosphere-ocean system (although 

not slow components of the climate system, such as ice sheets) to have equilibrated. 

Equilibrium and effective climate sensitivity will not be identical if the feedback parameter is 

inconstant over time or dependent on ΔF or ΔT. The behavior of CMIP5 models may provide 

some insight into these issues. 

Throughout 140-year simulations in which CO2 forcing is increased smoothly at 1% 

per annum (1pctCO2), the responses of almost all CMIP5 AOGCMs can be accurately 

emulated by convolving the rate of increase in forcing with the step response in their 

simulations in which CO2 concentration is abruptly quadrupled (abrupt4xCO2) (Figure 1; 

Good et al. 2011; Caldeira and Myhrvold 2013). Such behavior strongly suggests that 
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feedback strength in CMIP5 models generally does not change with F  or T  per se, at 

least for CO2 forcing from up to respectively quadrupling of its preindustrial concentration 

and the warming reached in abrupt4xCO2 simulations after half a century or so (typically 4−5 

K). Otherwise one would expect to see divergences, particularly in the first few decades of the 

1pctCO2 simulation when the applicable temperature is furthest below the mean temperature 

of the abrupt4xCO2-derived step-emulation components. We have also investigated feedback 

strength in the MPI-ESM-1.2  AOGCM under differing abrupt CO2 increases. Feedback 

strength is almost the same between abrupt2xCO2 and abrupt4xCO2 simulations up to at least 

year 150, when ΔT reaches 5 K under quadrupled CO2. 

 

Fig. 1  Comparison of actual and step-emulated ensemble-mean changes from preindustrial 

in global surface temperature, ΔT, and TOA radiative imbalance, ΔN, in 1pctCO2 

simulations. Small and large circles show respectively annual and pentadal mean actual 

values, blue for ΔT and green for ΔN. The red and magenta lines show respectively ΔT and 

ΔN values as emulated from the step-responses of the same models in abrupt4xCO2 

simulations. The non-logarithmic element of the CO2 forcing–concentration relationship 

(Byrne and Goldblatt 2014;  Etminan et al. 2016) has been allowed for. The same ensemble 

of 31 CMIP5 models is used as in Table S2. The minor excess of the emulated ΔN values in 

the middle years is due principally to the behavior of GISS-E2 models; if their p3 versions 

are excluded the match for ΔN becomes almost perfect throughout, while that for ΔT 

remains so.  
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However, in most CMIP5 AOGCMs, λ (here 
dN

dT
 ) tends to decrease a few decades 

into abrupt4xCO2 simulations – when N is plotted against T (a 'Gregory plot'), the slope is 

gentler after that time – although generally λ then remains almost constant for the rest of the 

simulation (Armour 2017 Fig. S1). In some cases, the decrease in λ may be linked to 

temperature- or time-dependent energy leakage (Hobbs et al. 2016). However, typically the 

decrease in λ appears to arise primarily from the strength of modeled shortwave cloud 

feedbacks varying with time, likely linked to evolving patterns of surface warming (Andrews 

et al. 2015). The decrease in λ means that effective climate sensitivity estimates derived from 

simulations forced by abrupt or ramped CO2 changes tend to increase with the analysis period, 

although in most cases they change only modestly once a multidecadal period has elapsed. It 

is unclear to what extent, if any, this behavior occurs in the real climate system. Possible 

implications of time-varying feedbacks for historical period energy budget ECS estimation are 

analyzed in section 7f. Until then, ECS estimates are not distinguished according to what 

extent they are potentially affected by time-varying feedbacks. 

ECS would also differ from the estimate provided by (4) if that were significantly 

affected by internal variability, or if effect on ΔT or ΔN of the composite forcing change over 

the estimation period differed from that of CO2 forcing. These issues are discussed in Sections 

3b, 3c, 4 and 7c. The possibility of internal variability in spatial surface temperature patterns 

affecting ECS estimation is discussed in Section 7a.  

Transient climate response (TCR) is the increase in surface temperature (averaged 

over twenty years) at the time of CO2 concentration doubling when it is increased by 1% a 

year, implying an almost linear forcing ramp over 70 years. Although designed as a measure 

of transient response in AOGCMs, TCR can be regarded as a property of the real climate 

system. TCR can be estimated by scaling the ratio of the response of global surface 

temperature to the change in forcing accruing approximately linearly over a period of circa 70 

years (Bindoff et al. 2014, p.920). That is: 

 
2 CO2TCR

T
F

F






 (5) 

TCR can be estimated using (5) with a recent final period and a base period ending circa 

1950. Although occurring mainly over the last 70 years, the effect on surface temperature of 

the development of forcing over the whole historical period (post ~1850) has been estimated 

to be broadly equivalent to that of a 100-year linear forcing ramp (Armour 2017). TCR may 

therefore also be estimated using a base period early in the historical period, with a possible 

marginal upwards bias since with a longer ramp period the climate system will have had more 

time to respond to the ramped forcing. LC15 found that estimating TCR using (5) with a 

recent final period and a base period either early in the historical period or of 1930−1950 

provided an estimate of TCR closely consistent with its definition. 

The energy budget approach has also been applied to estimate both ECS and TCR 

using regression over all or a substantial part of the historical period, rather than taking 
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differences between base and final periods (Gregory and Forster 2008; Schwartz 2012). 

Although regression makes fuller use of available information than the two-period method, 

using averages over base and final periods captures much of the available information, since 

internal variability is high on sub-decadal timescales and total forcing has only become 

reasonably large relative to its uncertainty relatively recently. Moreover, handling 

multidecadal internal variability and volcanic eruptions poses a challenge when using 

regression. Gregory and Forster (2008) excluded years with significant volcanism, but 

subsequent years may be affected by the recovery from volcanic forcing.  

It is important to use an appropriate forcing metric for energy budget sensitivity 

estimation. The surface temperature response to forcing from a particular agent relative to that 

from CO2 (its 'efficacy': Hansen et al. 2005) is in some cases sensitive to the metric used. In 

such cases, efficacy is normally much closer to unity when the effective radiative forcing 

(ERF) metric (Sherwood et al. 2015; Myhre et al. 2014) is used rather than the common 

stratospherically-adjusted radiative forcing (RF) metric. Unlike ERF, the RF metric does not 

allow for the troposphere and land surface adjusting to the imposed forcing. Since ERF is a 

construct designed to fit the global radiative response as a linear function of ΔT over time 

scales of decades to a century (Sherwood et al. 2015), it is an appropriate metric for energy 

budget sensitivity estimation. References here to forcing are to ERF except where indicated 

otherwise. AR5 only gives estimated forcing time-series for ERF. Its best estimates of 2011 

ERF differ from those of RF only for aerosols and contrails, although uncertainty ranges are 

generally wider for ERF than for RF.  

Uncertainty in energy budget estimates of ECS and TCR from instrumental 

observations stems primarily from uncertainty in F (LC15), which also produces most of 

the asymmetry in probability distributions for ECS and TCR estimates (Roe and Armour 

2011). The two main contributors to uncertainty in F  are aerosols and, to a substantially 

smaller extent, well-mixed greenhouse gases (WMGG).  

3.    Data sources and uncertainties 

As in LC15, forcing and heat uptake data and uncertainty estimates identical to those given in 

AR5 have been used unless stated otherwise. AR5 estimates represent carefully considered 

assessments in which many climate scientists with relevant expertise were involved, and 

underwent an extensive review process. Post-2011 values have insofar as possible been 

derived entirely from observational data, on a basis consistent with that in AR5. Trend-based 

extrapolation has only been used for some minor forcing and heat uptake components, except 

for 2016 aerosol and tropospheric ozone forcing. Only a brief discussion of the treatment of 

data uncertainties and internal variability is given here, since full details of our treatment can 

be found in LC15. This section summarizes information about the forcing, heat uptake and 

temperature data. Full details of changes relative to AR5 estimates for certain forcing and heat 
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uptake components, and of the updating of all components from 2011 to 2016, are provided in 

the Supplementary Material (S1 and S2).  

a. Forcings 

ERF time series medians up to 2011 (relative to 1750) are sourced from Table AII.1.2 

of AR5, with uncertainty estimates for 2011 derived from Table 8.6 and Table 8.SM.5 of 

AR5. The only changes to Table AII.1.2 values concern forcing from the principal WMGG, 

where recent revisions to forcing-concentration relationships (Etminan et al. 2016) have been 

incorporated throughout, and post-1990 changes in aerosol and tropospheric ozone forcing, 

where new estimates of their evolution based on updated anthropogenic emission data for 

1990−2015 (Myhre et al. 2017) have been adopted, adding their estimated post-1990 changes 

to the AR5 1990 values. Recent evidence concerning volcanic forcing (Andersson et al. 2015) 

was considered, but no revision to AR5 estimates was found necessary (Supplementary 

Material S1). The principal effect of these revisions is to make methane (CH4) forcing more 

positive, and post-1990 aerosol forcing less negative, than per AR5. After reaching −0.9 

Wm
−2

 in 1995, ERFAerosol weakens to −0.8 Wm
−2

 in 2011. The 2011 forcing uncertainty 

ranges are used, in conjunction with AR5 2011 medians, to specify the fractional uncertainty 

for each forcing constituent.  

Since AR5, understanding of anthropogenic aerosol forcing (ERFAerosol) has improved. 

A number of recent studies point to total aerosol forcing being substantially weaker than the 

lower end of the −1.9 to −0.1 Wm
−2

 2011 range (median −0.9 Wm
−2

) given in AR5, primarily 

due to negative forcing from aerosol-cloud interactions being weaker than previously thought 

(Seifert et al. 2015; Stevens 2015; Gordon et al. 2016; Zhou and Penner 2017; Nazarenko et 

al. 2017; Lohmann 2017; Malavelle et al. 2017; Stevens et al. 2017; Fiedler et al. 2017; Toll 

et al. 2017). Recent evidence regarding positive aerosol forcing from absorbing carbonaceous 

aerosols (Wang et al. 2014, Samset et al. 2014, Wang et al. 2016, Zhang et al. 2017) is mixed, 

on balance suggesting it may be lower than the AR5 best estimate, but above its lower 

uncertainty bound in AR5. Although some post-AR5 studies (e.g. Cherian et al. 2014, McCoy 

et al. 2017) have reported relatively strong aerosol forcing, Stevens (2015) presented several 

observationally-based arguments that total aerosol forcing since preindustrial was weak, and 

could not be stronger than −1.0 Wm
−2

.
1
 Supporting those arguments, Zhou and Penner (2017) 

and Sato et al. (2018) showed that negative cloud-lifetime aerosol forcing simulated by 

AOGCMs was unrealistic, Bender et al. (2016) showed that the positive correlation between 

aerosol loading and cloud albedo displayed in most climate models is not seen in 

observations, and Nazarenko et al. (2017) showed that aerosol forcing was weaker when 

climate feedbacks were allowed for.  In the light of these developments, the −1.9 Wm
−2

 

model-derived lower bound for 2011 aerosol forcing in AR5 now appears too strong. We have 

                                                        
1
 Substituting, for consistency, the higher WMGG forcing used in this study for that used in Stevens (2015) 

would slightly change its −1.0 Wm
−2

 aerosol forcing lower bound, to −1.06 Wm
−2

, too little to weaken the 

argument for the proposal made here. 
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therefore weakened it slightly to −1.7 Wm
−2

, as in Armour (2017), making the range 

symmetrical about the AR5 2011 median.  

Following LC15, CO2 and 'GHG Other' forcings are combined into a single ERFGHG 

time series, since AR5 does not distinguish between the two as regards ERF uncertainty. 

Uncertainty in forcing from WMGG almost entirely relates to how much forcing a given 

concentration of each greenhouse gas produces – uncertainty in concentrations is minor – and 

is likely highly correlated among WMGG. AR5 (Section 8.5.1) assumes that fractional ERF 

uncertainties for CO2 applies to all WMGG and to total WMGG, implying that fractional 

uncertainty in 2 CO2F   is the same as, and fully correlated with, that in ERFGHG. We follow Otto 

et al. (2013) and LC15 in adopting this assumption. Although uncertainty in WMGG forcing 

is substantial, since 2 CO2F   appears in the numerator of (4) and (5), and F  (to which ERFGHG 

is by far the largest contributor) in the denominator, the effects on ECS and TCR estimation 

of uncertainty in forcing from WMGG cancel out to a substantial extent. Dropping the 

assumption of uncertainty being correlated between CO2 and 'GHG Other' forcing would have 

a negligible effect on ECS and TCR estimate uncertainty ranges. That same applies if in 

addition the ERF-to-RF uncertainty ratio for non-CO2 WMGG were increased from the 

20%:10% ratio assumed in AR5 to 30%:10%, even if uncertainty were treated as perfectly 

correlated between all non-CO2 WMGG, as in AR5. 

Ozone (both Tropospheric and Stratospheric), Stratospheric H2O (Water vapor) and 

Land Use Change forcings, for which uncertainty distributions can be added in quadrature, are 

combined into a single ERFOWL forcing component series (termed ERFnonGABC in LC15).  

The resulting forcing best estimates and uncertainties used for the main results are 

summarised in Table 1, for both 2011 and 2016. AR5 forcing estimates and uncertainty 

ranges for 2011 are also shown. Following LC15, the uncertainty ranges for solar and 

volcanic forcing have been widened. The revised total 1750−2011 anthropogenic forcing 

estimate has increased by 9% from the AR5 value; the largest contribution comes from the 

revision in CH4 forcing. 2 CO2F   has also been revised up by 2.5%, to 3.80 Wm
−2

, which has an 

opposing effect on sensitivity estimation to the upward revision in total forcing. Figure 2 

shows the original AR5 and revised anthropogenic forcing time-series. 

LC15 concluded that volcanic forcing (ERFVolcano) in AR5 needs to be scaled down by 

40−50% in order to produce a comparable effect on surface temperature to ERFGHG and other 

forcings. Gregory et al. (2016) likewise found that volcanic forcing produced a substantially 

smaller response in AOGCMs than CO2 forcing. They quantified the effect in HadCM3, 

where ERFVolcano was smaller relative to stratospheric aerosol optical depth than per AR5 and 

its efficacy was also lower, implying that AR5 volcanic forcing needed to be scaled down by 

~50% for use in a global energy budget model. Since there is no authority in AR5 for 

applying an adjustment factor, the issue is sidestepped by using base and final periods with  
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Fig. 2 Anthropogenic forcings from 1750 to 2016. All time-series that are affected by the 

revisions to AR5 CO2, CH4 and nitrous oxide forcing–concentration relationships and to 

post-1990 revisions to AR5 aerosol and tropospheric ozone forcing are shown separately. In 

some cases the Original AR5 1750–2011 time-series overlay the Revised 1750–2016 time-

series prior to 2012. Unrevised anthropogenic forcing components (Stratospheric H2O, 

Land use (albedo), BC on snow, Contrails) have been combined into a single Other 

Anthropogenic time-series. Natural forcings (Solar, Volcanic) are not shown as they have 

not been revised and post 2011 changes in them are very small. 

matching mean volcanic forcing, as in LC15. The results of applying a scaling factor of 0.55 

are shown where sensitivity testing of estimates to the choice of base and final periods 

involves mismatched volcanic forcing. Likewise, as in LC15 the AR5 Land Use Change 

forcing (ERFLUC) series is used despite it representing only effects on surface albedo. AR5 

assessed that including other effects of land use change it is about as likely as not to have 

caused net cooling. The effect of setting ERFLUC to zero is also reported. AR5 gives an 

estimated efficacy range of 2−4 for the minor black carbon on snow and ice forcing 

(ERFBCsnow), which is applied probabilistically. 
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ERF component This study 

1750–2016 

best estimate 

Revised 

1750–2011 

best estimate 

AR5 1750–2011 best 

estimate and 90% CI 

Part treated 

as 

independent 

Added fixed 

uncertainty 

90% CI 

WMGG 3.176 2.989 2.831 (2.260–3.400) 0%  

Ozone (total) 0.392 0.379 0.350 (0.141–0.559)   

Stratospheric 

H2O 
0.074 0.073 0.073 (0.022–0.124)   

Land use 

(albedo) 
−0.151 −0.150 

−0.150 (−0.253–

−0.047)   
  

Total OWL 0.315 0.302 0.273 (0.034– 0.512) 50%  

Aerosol (total) −0.769 −0.777 

−0.900 (−1.900–

−0.100); revised to 

(−1.700–−0.100) 

25%  

BC on snow 0.040 0.040 0.040 (0.020–0.090)  Ignored  

Contrails 0.059 0.050 0.050 (0.020–0.150) Ignored  

Total 

anthropogenic  
2.821 2.581 2.294(1.134–3.334)   

Solar 0.021 0.030 
0.030 (−0.021–

+0.081) 
50% ±0.05 

Volcanic −0.099 −0.125 
−0.125 (−0.160–

−0.090) 
50% ±0.072 

Table 1 Components of ERF and treatment of their uncertainties. Units are Wm−2.  

b. Heat uptake 

Planetary heat uptake – the rate of increase in its heat content – occurs primarily 

(>90%) in the ocean. The AR5 estimates for heat uptake by the atmosphere, ice, land and the 

deep (sub-2000 m) ocean are used unaltered up to 2011 and extended to 2016. AR5's source 

for 700−2000 m ocean heat content (OHC), Levitus et al. (2012), has been updated, but a new 

dataset (Cheng et al. 2017) is also available; the average of those two datasets is used here. 

AR5's source for 0–700 m OHC has not been updated to 2016. The average of three available 

fully updated 0−700 m OHC datasets (Cheng et al., Levitus et al., and Ishii and Kimoto 

(2009)) is used instead, for all years. There are considerable divergences between OHC 

estimates from the various datasets, arising from differences in the data used, corrections 

made to it, and the mapping (infilling) methods used. Averaging results from different OHC 

datasets reduces the effect of errors particular to individual datasets. Over the main 

1995−2011 and 1987−2011 final periods used in LC15, implementing the foregoing changes 

to the sourcing and calculation of OHC estimates produces slightly higher 0−2000 m ocean 



 

13 

 

heat uptake (OHU) estimates than use of the original AR5 datasets. Since the mid-2000s, 

when the Argo floating buoy network achieved near-global coverage, OHC uncertainty has 

been lower. The revised estimation basis produces total heat uptake within 0.02 Wm
−2

 of the 

estimates by Desbruyeres et al. (2017) of 0.72 Wm
−2

 over 2006-2014 and by Johnson et al. 

(2016) of 0.71 W m
−2

 over 2005−2015.  

As in previous energy budget studies, AOGCM simulation-derived estimates of heat 

uptake are used for the base periods, since OHC was not measured then. The heat uptake 

values used in LC15, which were derived from simulations by CCSM4 starting in AD 850 

(Gregory et al. 2013), scaled by 0.60, were 0.15, 0.10 and 0.20 W m
−2

 respectively for the 

1859−1882, 1850−1900 and 1930−1950 base periods. The unscaled CCSM4-derived values 

were consistent with the value derived by Gregory et al. (2002) from a different AOGCM. 

The LC15 values are adopted (taking the 1859−1882 value for 1869−1882), as are the LC15 

standard error estimates, being in each case 50% of the heat uptake estimate.  

The variability in total heat uptake of 0.045 Wm
−2

 for all base and final periods used 

in LC15, derived from the ultra-long HadCM3 (Gordon et al. 2000) control run, is also 

adopted. Investigation showed this to be adequate for each of the base and final periods used 

here. 

c. Surface temperature 

As in LC15, the HadCRUT4 surface temperature dataset (Morice et al. 2012) is used, 

updated from HadCRUT4v2 to HadCRUT4v5. Results are also presented using a globally-

complete version infilled by kriging (Had4_krig_v2: Cowtan and Way 2014). The surface 

temperature trends over 1900−2010 are identical in both versions, with Had4_krig_v2 

warming faster than HadCRUT4v5 early and late in the record.  

Unlike GISStemp and NCDC MLOST (now NOAA GlobalTemp), the other two 

surface temperature datasets cited in AR5, HadCRUT4 extends back to 1850 rather than 1880, 

providing adequate data early in the historical period prior to the period of heavy volcanism 

from 1883 on. The warming shown by the infilled GISStemp and NOAA4.0.1 datasets 

between twenty-year periods early and late in their records (1880−1899 and 1997−2016) was 

respectively 0.85 K and 0.82 K, against 0.83 K for HadCRUT4v5 and 0.89 K for 

Had4_krig_v2. 

Both versions of HadCRUT4 provide an ensemble of 100 temperature realizations that 

preserves the time-dependent correlation structure. Uncertainty in mean surface temperature 

for each period is calculated on a basis consistent with the applicable covariance matrix of 

observational uncertainty, and combined in quadrature with an estimate of inter-period 

internal variability in T . The LC15 estimate of 0.08 K standard deviation for such internal 

variability is adopted; it was conservatively scaled up from 0.06 K derived from the ultra-long 

HadCM3 control run. Sensitivity testing in LC15 showed that a further 50% increase in 

internal variability in T had almost no effect on uncertainty in ECS and TCR estimates. 
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4.    Choice of base and final periods 

Two-period energy budget studies have used base and final periods lasting between one and 

five decades. Longer periods reduce the effects of interannual and decadal internal variability, 

but shorter periods make it feasible to avoid major volcanism and a short final period provides 

a higher signal. Base and final periods should be at least a decade, to sufficiently reduce the 

influence of interannual variability. Volcanic forcing efficacy, relative to AR5 forcing 

estimates, appears to be substantially below unity, and may differ according to the location 

and type of eruption. Moreover, prior to the satellite (post-1978) era there are considerable 

uncertainties regarding the magnitude of volcanic eruptions and resulting forcing. Therefore, 

accurate sensitivity estimation requires estimated volcanic forcing to be matched between the 

base and final period, and relatively low. Likewise, initial and final periods should be well 

matched regarding the influence of the principal sources of interannual and multidecadal 

internal variability, notably ENSO and Atlantic multidecadal variability.  

Atlantic multidecadal variability is often quantified by an index of detrended north 

Atlantic sea-surface temperatures, either including (Enfield et al. 2001) or excluding (van 

Oldenborgh et al. 2009) the tropics, and termed the Atlantic Multidecadal Oscillation (AMO). 

The internal multidecadal pattern in near-global sea-surface temperature found by Delsole et 

al. (2011) is very similar to Enfield et al.'s AMO index. Enfield et al. (2001) detrended 

relative to time, whereas van Oldenburgh detrended relative to surface temperature. While 

following van Oldenburgh et al. in excluding the tropics (which are more affected by ENSO 

state than the extratropics), we prefer detrending relative to total forcing, omitting volcanic 

years, in order to exclude any forced signal. Whichever definition is used, the AMO has had a 

quasi-periodicity of 60−70 years during the instrumental record, peaking around 1875, 1940 

and 2005. When using a final period ending in 2016, to maximise the anthropogenic warming 

signal, matching its mean AMO state requires a base period either early in the historical 

period or in the mid-twentieth century.  

Matching mean ENSO state for base and final period levels is not practical where a 

base period early in the record is used, since the mean ENSO state, as represented by the MEI 

index (Wolter and Timlin 1993), was lower then than in recent decades. However, the MEI 

index depends partly on non-detrended sea-surface temperature (SST) and could include a 

forced element, so use of a detrended version is arguably preferable. On that basis, there is no 

difficulty in matching mean ENSO state. In any event, of the natural sources of influence on 

sensitivity estimation considered, mean ENSO state appears to be the least influential. 

LC15 used base periods of 1859−1882, 1930−1950 and 1850−1900. LC15's preferred 

base and final periods were 1859−1882 and 1995−2011, being the longest periods near the 

start and at the end of the instrumental record with low volcanic activity and with adequately 

matched AMO influence. As volcanic activity has remained low since 2011, the obvious 

choice of updated final period is 1995−2016. This includes a number of relatively cold years 

but also two very strong El Niños. The decade 2007−2016, which includes a mix of cold and 
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warm years and ends with a powerful El Niño, is arguably preferable as it provides a higher 

F  and the best constrained TCR and ECS estimates. Moreover, as the Argo network was 

operational throughout 2007−2016, confidence in the reliability of OHU estimation is higher.  

Although 1859−1882 is well matched with both 1995−2016 and 2007−2016 as regards 

mean volcanic forcing, and acceptably matched for mean AMO state, HadCRUT4v5 

observational data sampled a particularly low proportion of the Earth's surface throughout 

most of the 1860s – substantially lower than both prior to 1860 and from 1869 on. During the 

same period, larger than usual differences arose between the original HadCRUT4v5 and the 

globally complete Had4_krig_v2 surface temperature estimates. Infilling through kriging is 

subject to greater uncertainty when observations are sparser. There is merit in using the longer 

1850−1882 period, excluding all years with low (under 20% of global area) HadCRUT4v5 

coverage (being 1860−1868); however, as volcanic forcing was strong (below –0.5 Wm
−2

) 

over 1856−1858 those years would also need to be excluded to avoid mismatched volcanic 

forcing. Since the complete shorter 1869−1882 period produces essentially identical TCR and 

ECS estimation we use that instead. It is well matched with the 1995−2016 and 2007−2016 

final periods as regards mean volcanic forcing as well as AMO and ENSO state. The better 

observed 1930−1950 period is also well matched with those final periods, although its mean 

AMO state is stronger. 

TCR and ECS estimates are also computed using much longer base and final periods. 

The 1850−1900 long base period, taken in AR5 to represent pre-industrial surface 

temperature, has substantial mean volcanic forcing. It is matched with 1980−2016, which has 

almost identical mean volcanic forcing and acceptably similar mean AMO and ENSO states. 

Figure 3 shows variations in the three sources of natural variability discussed, along 

with areal coverage of HadCRUT4v5. Five year running means are shown for the MEI and 

AMO indexes.  

5.    Methods 

The method used to calculate ECS and TCR is identical to that in LC15, where it is set out in 

detail. In summary, the main steps in deriving best estimates and uncertainty ranges for ECS 

and TCR for each base period and final period combination are as follows: 

1.  Unrevised AR5 2011 values for each forcing component (ERFGHG, ERFAerosol, 

ERFBCsnow, ERFContrails, ERFOWL, ERFSolar and ERFVolcano) are sampled, using the original 

AR5 uncertainty distributions except for aerosol forcing. For aerosol forcing a normal 

distribution with unchanged −0.9 Wm
−2

 median but the revised −0.1 to −1.7 Wm
−2

 

5−95% uncertainty range is used. Where appropriate, part of fractional-type uncertainty 

in a forcing component (being all but any fixed element) is treated as independent 

between the base and final periods, and the total uncertainty is split between separate 

common and independent random elements before sampling. The AR5 efficacy range 

for ERFBCsnow is applied probabilistically at this stage.  



 

16 

 

 

Fig. 3 Natural factors that influence selection of base and final periods, and surface 

temperature dataset coverage, during 1850–2016. Volcanic forcing is from AR5. The AMO 

index comprises the residuals from regressing 25–60 N, 5–70 W HadSST3 data on total 

forcing with years in which volcanic forcing is < −0.5 Wm−2 omitted, and is scaled up by 3 

times. The MEI index has been extended before 1950 using a regression fit to the MEI.ext 

index (Wolter and Timlin 2011), and then detrended (relative to time). The two indices are 

plotted as five-year centered means (three-year/one-year means for next-but-end/end years); 

their units are arbitrary. Annual means of HadCRUT4v5 monthly grid-cell coverage as a 

fraction of the Earth's surface are shown. The preferred base and final periods are shaded. 

 

After dividing by the AR5 2011 best estimates, the (one million) samples are used to 

scale the period means computed from the best estimate time series (revised from AR5 

where relevant), samples from the fixed elements of solar and volcanic forcing 

uncertainty are added and the components combined, thus deriving sampled F  values. 

The central 2 CO2F   value is scaled in the same proportion as the central ERFGHG values. 

This produces 2 CO2F   samples with uncertainty realizations (proportionately) matching 

those for WMGG forcing.  

2.  Uncertainty distributions for T  (using the relevant 100-realizations ensemble) and 

for N  are computed, adding in quadrature the estimated uncertainties of the base and 

final period means and the estimated internal variability, and random samples drawn 

from those distributions. 

3.  For each sample realization of T , F , N  and 2 CO2F  , the ECS and TCR values 

given by equations (4) and (5) are calculated. Histograms of the sample ECS and TCR 
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values are then computed to provide median estimates, uncertainty ranges and 

probability densities, treating samples where the denominator is negative as having 

infinitely positive sensitivities.  

The estimates of T , F  and N , and their uncertainty ranges, are given in Table 2, with 

the relevant corresponding values from LC15 shown for comparison.  

 

Base period Final period ΔT HadCRUT4 

[K] 

ΔT Had4_krig_v2  

[K] 

ΔF 

[Wm
−2

] 

ΔN 

[Wm
−2

] 

1869–1882 2007–2016 0.80 (0.65–0.95) 0.88 (0.73–1.03) 2.52 (1.68–3.36) 0.50 (0.25–0.75) 

1869–1882 1995–2016 0.73 (0.58–0.87) 0.79 (0.63–0.94) 2.26 (1.44–3.09) 0.49 (0.29–0.69) 

1850–1900 1980–2016 0.65 (0.51–0.79) 0.71 (0.56–0.86) 2.01 (1.21–2.82) 0.40 (0.21–0.60) 

1930–1950 2007–2016 0.61 (0.47–0.75) 0.65 (0.51–0.79) 1.94 (1.22–2.66) 0.45 (0.18–0.72) 

Lewis and Curry (2015) estimates for comparison 

1859–1882 1995–2011 0.71 (0.56–0.86) n/a 1.98 (0.99–2.86) 0.36 (0.15–0.58) 

1850–1900 1987–2011 0.66 (0.52–0.81) n/a 1.88 (0.92–2.74) 0.41 (0.19–0.63) 

Table 2 Best estimates (medians) and 5–95% uncertainty ranges for changes T  in global mean 

surface temperature, F in effective radiative forcing and N  in total heat uptake. between the 

base and final periods indicated. The final two lines show comparative values for LC15 for the 

first two period combinations given in that paper. The values for F  are after probabilistically 

applying the AR5 efficacy range for ERFBCsnow. 

6.    Results 

ECS and TCR estimates based on each of the four combinations of base period – final period 

are presented in Table 3. The ECS estimates in this Section assume that the climate feedback 

parameter over the historical period, which they reflect, is a constant. That is, they measure 

effective climate sensitivity but assume it equals equilibrium climate sensitivity; the possible 

implications of relaxing this assumption are discussed in Section 7f. The relevant results from 

LC15 are shown for comparison. Estimates based on both original HadCRUT4v5 surface 

temperature data and on the globally-complete Had4_krig_v2 version are given. Probability 

density functions (PDFs) for these ECS and TCR estimates are presented in Figure 4.  
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Base period Final period ECS  

best 

estimate 

[K] 

ECS  

17-83% 

range 

[K] 

ECS  

5-95% 

range 

[K] 

TCR  

best 

estimate 

[K] 

TCR  

17-83% 

range 

[K] 

TCR  

5-95% 

range 

[K] 

1869–1882 2007–2016 
1.50 

1.66 

1.2–1.95 

1.35–2.15 

1.05–2.45 

1.15–2.7 

1.20 

1.33 

1.0–1.45 

1.1–1.60 

0.9–1.7 

1.0–1.9 

1869–1882 1995–2016 
1.56 

1.69 

1.2–2.1 

1.35–2.25 

1.05–2.75 

1.15–3.0 

1.22 

1.32 

1.0–1.5 

1.1–1.65 

0.85–1.85 

0.95–2.0 

1850–1900 1980–2016 
1.54 

1.67 

1.2–2.15 

1.3–2.3 

1.0–2.95 

1.1–3.2 

1.23 

1.33 

1.0–1.6 

1.05–1.7 

0.85–1.95 

0.9–2.15 

1930–1950 2007–2016 
1.56 

1.65 

1.2–2.15 

1.25–2.3 

1.0–3.0 

1.05–3.15 

1.20 

1.27 

0.95–1.5 

1.05–1.6 

0.85–1.85 

0.9–1.95 

Lewis and Curry (2015) results for comparison 

1859–1882 1995–2011 1.64 1.25–2.45 1.05–4.05 1.33 1.05–1.8 0.90–2.5 

1850–1900 1987–2011 1.67 1.25–2.6 1.0–4.75 1.31 1.0–1.8 0.85–2.55 

Table 3 Best estimates (medians) and uncertainty ranges for ECS and TCR using the base and 

final periods indicated. Values in roman type compute T using the HadCRUT4v5 dataset; 

values in italics compute T using the infilled, globally-complete Had4_krig_v2 dataset. The 

preferred estimates are shown in bold. Ranges are stated to the nearest 0.05 K. The final two 

lines show the comparable results from LC15 for the first two period combinations given in 

that paper. All these ECS estimates assume that the climate feedback parameter is a constant. 

For each source of surface temperature data, the four best (median) estimates agree 

closely for both ECS and TCR. Based on HadCRUT4v5 data, the best estimates are in the 

range 1.50−1.56 K for ECS and 1.20−1.23 K for TCR. Based on globally-complete 

Had4_krig_v2 data, which show greater warming, the best estimates are in the range 

1.65−1.69 K for ECS and 1.27−1.33 K for TCR. Lower (5%) uncertainty bounds for ECS and 

TCR vary little between the four period combinations. Use of 1869−1882 as the base period 

and 2007−2016 as the final period provides the best-constrained, preferred, estimates, with 

95% bounds for ECS and TCR of 2.45 K and 1.7 K respectively using HadCRUT4v5 (2.7 K 

and 1.9 K using Had4_krig_v2); the corresponding median estimates are 1.50 K and 1.20 K 

(Had4_krig_v2: 1.66 K and 1.33 K).   

The new ECS and TCR median estimates based on HadCRUT4v5 are approximately 

10% lower than those in LC15, largely due to the positive revisions to estimated CH4 and 

post-1990 aerosol forcing, partly offset by the higher estimated 2 CO2F   and (for ECS) by 

estimated heat uptake in the final period being a slightly higher fraction of forcing.  
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Fig. 4 Estimated probability density functions for ECS and TCR using each period 

combination shown in the main results. Original GMST refers to use of the HadCRUT4v5 

record; Infilled GMST refers to use of the Had4_krig_v2 record. Box plots show probability 

percentiles, accounting for probability beyond the range plotted: 5–95 (bars at line ends), 

17–83 (box-ends) and 50 (bar in box: median). 

Results of some sensitivity analyses are shown in Table 4, with various aspects of the 

1869−1882 base period, 2007−2016 final period case being modified. These analyses do not  

systematically explore all possible variations in choice of data, uncertainty assumptions or 

methodology. For clarity, only values based on HadCRUT4v5 surface temperature data are 

shown; fractional sensitivities are similar using Had4_krig_v2 data.  

Using 1850−1882 as the base period, with low observational coverage and volcanic 

years excluded, produces virtually identical ECS and TCR medians and uncertainty ranges to 

using 1869−1882. Generally, estimates of ECS and TCR are modestly sensitive to selection of 

base period if no allowance is made for volcanic forcing (as estimated in AR5) having a low 

efficacy; when its efficacy is taken as 0.55 the ECS and TCR best estimates are little changed 

upon substituting 1850−1900 or 1850−1882 (all years) as the base period. Moreover, applying 

a volcanic forcing efficacy of 0.55 when regressing surface temperature per HadCRUT4v5 on 

(efficacy-adjusted) forcing over all years in 1850−2016 produces a TCR estimate of 1.19 K, 

almost identical to the two-period estimate. By comparison, doing so using unit volcanic 

efficacy gives a much lower TCR value of 0.98 K.  

The residuals from regressing surface temperature per HadCRUT4v5 on efficacy-

adjusted forcing over 1850−2016 with volcanic efficacy set at 0.55 have a mean over 

2007−2016 only 0.01 K higher than that over 1869−1882 (0.03 K higher using Had4_krig_v2 

data). For the 1995−2016 final period the corresponding excesses are similar. The tiny 

magnitudes of these inter-period differences indicate that both final periods are well matched 

with the 1869−1882 base period as regards internal variability. 
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Variation from 1869–1882 base period, 2007–2016 

final period, main results for the HadCRUT4v5 case  

ECS  

best 

estimate 

[K] 

ECS  

5-95% 

range 

[K] 

TCR  

best 

estimate 

[K] 

TCR  

5-95% 

range 

[K] 

Base case – no variations 1.50 1.05–2.45 1.20 0.9–1.7 

Base period 1850–1882
2
 ex low cover & volcanic yrs

3
 1.50 1.05–2.45 1.20 0.9–1.7 

Base period 1850–1900; volcanic efficacy 1.0 1.44 1.05–2.15 1.16 0.9–1.6 

Base period 1850–1900; volcanic efficacy 0.55 1.52 1.1–2.35 1.21 0.9–1.65 

Base period 1850–1882
1
; volcanic efficacy 0.55 1.52 1.1–2.4 1.22 0.9–1.7 

ERFAerosol uncertainty range 5% bound as per AR5 1.51 1.05–2.65 1.21 0.9–1.8 

ERFWMGG uncertainty range scaled up by 50% 1.50 1.05–2.6 1.20 0.9–1.75 

ERFOWL uncertainty range scaled up by 50% 1.50 1.05–2.55 1.20 0.85–1.75 

ERFAerosol uncertainty range scaled down by 50% 1.50 1.1–2.15 1.20 0.95–1.55 

AR5 original ERFGHG + >1990 aerosol & O3 forcing
4
 1.68 1.1–3.25 1.31 0.9-2.05 

0-2000 m OHC based only on Cheng et al data 1.47 1.05–2.35 n/a n/a 

0-2000 m OHC based only on Levitus/NOAA data 1.54 1.05–2.55 n/a n/a 

ERFLUC set to zero (increases F  by 0.10 Wm
−2

) 1.43 1.0–2.25 1.16 0.85–1.6 

Table 4 Sensitivity of best estimates (medians) and uncertainty ranges for ECS and TCR. Ranges 

are stated to the nearest 0.05 K. 

Reverting the aerosol forcing 5% uncertainty bound back from –1.7 Wm
−2

 to the 

original AR5 –1.9 Wm
−2

 level increases the 95% bounds for ECS and TCR by respectively 

0.2 K and 0.1 K; their median estimates barely change. Scaling up by 50% the uncertainty 

range for ERFWMGG increases those bounds by 0.15 K and 0.05 K respectively, while doing so 

for ERFOWL increases them by 0.1 K and 0.05 K respectively; scaling down these uncertainty 

ranges by 50% has approximately equal but opposite effects. Reducing the aerosol forcing 

uncertainty range by 50% reduces the 95% bound for ECS by 0.3 K to 2.15 K and that for 

TCR by 0.15 K to 1.55 K. 

                                                        
2
 Heat uptake for the 1850−1882 base period is set mid-way between those for the 1850−1900 and 

1869−1882 periods, or equal to the latter when low coverage and volcanic years are excluded. 

3
 The criteria for excluding years from the 1850-1882 base period due to low coverage or volcanism is 

HadCRUT4v5 areal coverage < 0.2 or ERFVolcano < –0.5 Wm
−2

. 
4
 AR5 original (unrevised) post-2011 tropospheric ozone and aerosol forcing are derived by extrapolation 

using their small 2002−11 trends. 
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Using unrevised AR5 forcing–concentration relationship estimates for the principal 

WMGG and for post-1990 aerosol and tropospheric ozone forcing results in the ECS and 

TCR median values increasing by 0.18 K and 0.11 K respectively. The 95% uncertainty 

bounds for ECS and TCR increase more, by 0.8 K and 0.35 K respectively, but remain well 

below their levels in LC15. In contrast, computing 0−2000 m OHU using only Cheng et al., or 

only Levitus et al., data instead of using estimates averaged over those datasets (and, for the 

0–700 m layer, the Ishii and Kimoto dataset), affects ECS best estimates by merely  ±2−3%, 

with the 95% bound altering by ±0.1 K; TCR estimates are unaffected.  

7.    Discussion   

Since publication of LC15, various papers have claimed that the energy budget approach 

and/or temperature dataset used in LC15 do not enable ECS and TCR to be determined 

satisfactorily from historical observations, and lead to the LC15 estimates being biased low.  

Here we address these critiques, as well as implications of feedback analysis and research 

concerning SST warming patterns. 

a.  Role of historical sea-surface temperature warming patterns 

The pattern of observed surface warming over the historical period differs from that 

simulated by most CMIP5 models. Gregory and Andrews (2016) (GA16) found that feedback 

strength λ in simulations by two atmosphere-only models (AGCMs), HadGEM2-A and 

HadCM3-A, driven by observed evolving changes in SST and sea-ice, but with preindustrial 

atmospheric composition and other forcings fixed (amipPiForcing), was considerably higher 

over the historical period than in years 1–20 of abrupt4xCO2 simulations. Moreover,  λ 

showed substantial decadal variation, being particularly large over the post-1978 period. Zhou 

et al. (2016) found broadly similar behavior in two other AGCMs. 

We focus here on GA16's amipPiForcing simulation data from the more advanced, 

current generation HadGEM2 model. GA16's analysis of variation in λ (their α ) measured by 

regression over a 30-year sliding window, with small temperature changes except towards the 

end, is not relevant to energy budget estimation spanning much longer periods and larger 

changes. Moreover, GA16’s analysis method produces large variability in λ estimates when 

tested on pseudodata embodying a constant λ (Figure S2).  

Plotting ΔR against ΔT using pentadal means, averaging-out interannual noise, and 

considering how averages over consecutive longer periods compare (Figure 5a), provides a 

more suitable assessment of the stability of feedback strength in HadGEM2-A over the 

historical period. Over the last 75 years, during which over 80% of the total forcing change 

occurred, ΔR and ΔT pentadal anomalies are clustered around the best-fit line, with means for 

all five 15-year sub-periods lying very close to it. There are a few pentadal  points some 

distance from the best fit line, as one would expect from internal variability, but little 

evidence of fluctuating multidecadal feedback strength. The largest excursions of ΔR from the 
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best-fit λ estimate of 1.90 Wm
−2

K
−1

 were in the 20 years prior to 1925 and in the decade 

centered on 1980 (Figure S3).
5
 The latter was responsible for the strong 1970−1995 upwards 

trend in 30-year regression-based λ in GA16 Figure 2(a); if the 1976−1985 ΔR values are 

suitably adjusted, the trend is flat from 1960 on (Figure S4). However, the anomalous ΔR 

values circa 1980 have only a minor effect on λ estimates derived from 15-year means: for 

both 1966−1980 and 1981−1995, ΔR / ΔT was only 7% lower than for 1996−2010. The early 

heavy volcanism (during 1883–1905) appears not to have affected the best-fit λ: the ratio of 

changes in R and T between 1931−1960 and 1996−2010, two volcanism-free periods, gives 

almost the same value. Fits for each individual amipPiForcing run are very similar (negligible 

y-intercept, slopes within 5% of the 1.90 Wm
−2

K
−1 

for the ensemble-mean, R
2 
= 0.93 versus 

0.94 for the ensemble-mean, in all cases with 1906−25 data excluded). This analysis shows 

that HadGEM2-A displays a near constant λ of 1.9 Wm
−2

K
−1

 over the historical period when 

driven by observed evolving SST patterns – over 2.3⤬ as high as the 0.82 W m
−2

K
−1

 over 

years 1−20 of HadGEM2-ES's abrupt4xCO2 simulation, and corresponding to an effective 

climate sensitivity of only 1.67 K.
6
  

GA16 offered three possible explanations for feedback strength being higher over the 

historical period in their amipPiForcing experiments than over years 1−20 of the 

abrupt4xCO2 simulations. They found two of them conflicted with their calculated trends in 

λ, leading them to favour the importance of the third explanation, being that unforced 

variability strongly influenced historical variations in SST patterns. However, Zhou et al. 

(2016) found that if CMIP5 control simulations realistically estimate internal variability on 

decadal timescales, then at least part of the 1980-2005 SST trend pattern must be forced. In 

HadGEM2's case, under 1% of internal variability realizations simulated by CMIP5 

AOGCMs would raise the ΔR value for the final 15 years of the amipPiForcing run implied 

by the λ value HadGEM2-ES exhibits early in its abrupt4xCO2 simulation even 30% towards 

its actual amipPiForcing value (Figure S5). Our finding that the relationship between pentadal 

ΔR and ΔT in HadGEM2-A during its amipPiForcing experiment is stable, apart from two 

excursions, (Figures 5a and S3) strongly points to the observed SST pattern evolution being 

largely forced and to much lower λ values in years 1−20 of HadGEM2-ES's abrupt4xCO2 

experiment reflecting unrealistic simulated SST pattern evolution. If follows that there is no 

reason to believe energy budget sensitivity estimates based on changes over the full historical 

period are biased downwards by internal variability in SST patterns.  

                                                        
5
 The first excursion is cotemporaneous with a period of strongly negative SST anomalies in the North 

Atlantic and reconstructed salinity anomalies in the Labrador Sea (Muller et al. 2014). The second 

excursion is cotemporaneous with decadal variability linked to the 1976 Pacific climate shift (Trenberth 

and Hurrell 1994). Both events likely arose from multidecadal internal variability; there is little evidence of 

either being forced. 

6
 Based on our estimated 2 CO2F   for HadGEM2-ES of 3.18 Wm

−2
. 
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Fig. 5  Change in net outgoing radiation ΔR plotted against change in surface temperature 

ΔT. Blue and cyan circles show pentadal means, red squares show 15-year means. Panel a: 

average anomalies, relative to the 1871–1900 mean, from two 1871–2010 amipPiForcing 

simulations by HadGEM2-A. The black line shows the linear fit with pentads spanning 

1906–1925 (cyan circles) excluded (see Figure S2). No-intercept fitting with all pentads 

included yields an almost identical fit. Plotted 15-year means are for periods ending 1950, 

1965, 1980, 1995 and 2010. Panel b: observationally-estimated anomalies over 1872–2016 

relative to the 1850–1884 mean. Forcing is as per section 3.a, with an efficacy of 0.55 

applied to ERFVolcano. ΔR is estimated as (2.52 − 0.50)/2.52 * ΔF; this scaling is based on 

the ΔF and ΔN values from row one of Table 2. Had4_krig_v2 is used for ΔT. The black 

line shows the no-intercept linear fit to all pentadal values. Fitting with an intercept, but 

excluding pentads spanning 1907–1926, gives a 1% lower best-fit slope. Plotted 15-year 

means are for periods 1927–1941, 1942–1956, 1957–1971, 1972–1986, 1987–2001 and 

2002–2016. Pre-1927 pentads are colored cyan. 

 

Observational estimates of the relationship between ΔR and ΔT throughout the 

historical period are also relevant. We estimate λ using all 15-year periods in 1927−2016, as 

well as by regression over 1872−2016, anomalizing relative to a 1850−1884 base period. 

Average volcanism in 1850−1884 matches that over both 1927−2016 and 1872−2016, and 

when using 2007−2016 anomalies that base period gives the same λ estimate (2.29 Wm
−2

K
−1

, 

corresponding to an ECS of 1.66 K) as per the main 2007-2016 based results with globally-

complete ΔT. Until recent decades ΔR was unobserved; we approximate it by scaling ΔF pro 

rata to the observationally-estimated ΔR:ΔF ratio for 1869−1882 to 2007−2016, assuming 

that ΔN is proportional to ΔT over the historical period (Gregory and Forster 2008). We scale 

ERFVolcano by 0.55 to adjust for its low efficacy. Our no-intercept pentadal regression fit over 
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1872–2016 gives λ = 2.27 Wm
−2

K
−1

.  Post-1926 (ΔR, ΔT) pentadal means (Figure 5b) cluster 

around the best-fit line, while most of the 15-year means lie almost on it.  

The considerable stability of observationally-based λ estimates over 1927−2016 

provides further evidence that feedback strength did not fluctuate materially during the 

historical period, and strengthens confidence in our main results. 

b. Weaknesses in the feedback analysis constraint 

It has been argued that relatively well understood feedbacks (water vapor/lapse rate, 

albedo) imply, in the absence of evidence for cloud feedbacks being significantly negative, an 

upper bound on the climate feedback parameter corresponding to ECS being 2 K or higher, 

particularly if anvil cloud-height feedback is also included. However, an analysis of feedbacks 

and forcing in CMIP5 models (Caldwell et al. 2016) indicates that if diagnosed cloud 

feedbacks are excluded, the median implied ECS reduces from 3.4 K to 2.3 K, with ECS 

falling below 2 K in a quarter of the models. More fundamentally, the fact that AGCMs can 

generate widely varying climate feedback strength depending on the pattern of SST change 

(which feedback analysis does not constrain) weakens the feedbacks constraint argument.  

A substantial part of the initial radiative response to CO2 forcing may be viewed (and 

mathematically modeled) as reflecting a sub-decadal timescale ocean adjustment process 

during which ocean heat transport and SST patterns alter, negatively affecting shortwave 

cloud radiative effect (Andrews et al. 2015) so that R increases for a given T, thus partially 

counteracting the forcing independently of surface temperature increase (Williams et al. 2008; 

Sherwood et al. 2015; Rugenstein et al. 2016). Feedback analysis derived constraints, even if 

correct, do not apply to such an adjustment. Accordingly, as during the initial decade or two 

the radiative response partly reflects adjustments, the apparent climate feedback parameter 

may be considerably higher then than feedback analysis suggests is possible. While the 

(lower) underlying climate feedback parameter if not affected by adjustments, and may be 

time-invariant, ECS is affected. 

In abrupt4xCO2 simulations, where diagnosed climate feedback strength is typically 

substantially greater in the first decade or two than subsequently, eigenmode decomposition 

of CMIP5 AOGCM responses (Proistosescu and Huybers 2017) indicates that only about one-

third of the initial forcing remains once sub-decadal timescale responses are complete, and 

that the climate feedback parameter associated with sub-decadal timescale responses, if not 

regarded as partially associated with adjustment processes, ranges up to 3 Wm
−2

K
−1

.  

We conclude that simple global feedback analysis cannot rule out low ECS even if 

global cloud feedback is ultimately positive, because radiative response, forcing adjustments 

and feedbacks depend on the pattern of SST warming, which may differ significantly from 

that simulated by AOGCMs. 
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c.  ERF efficacy  

There have been suggestions that the composite forcing during the historical period 

has an overall ERF efficacy below one, so that historical forcing will have produced less 

warming than CO2 forcing of equal ERF magnitude (Shindell 2014; Kummer and Dessler 

2014; Marvel et al. 2016). In most cases, the shortfall is attributed principally to spatially 

inhomogeneous negative aerosol forcing having an efficacy exceeding one. Using historical 

all-forcings, WMGG-only and natural forcings-only simulations by a small ensemble of 

CMIP5 models, Shindell estimated that aerosol ERF – combined with the much smaller ozone 

ERF – had an  efficacy of 1.5, resulting in the (transient) efficacy of historical ERF being 

approximately 0.85. Kummer and Dessler showed that applying Shindell's aerosol and ozone 

ERF efficacy estimate increased their ECS estimate by 50%.  

Marvel et al., using the GISS-E2-R model and a set of single-forcing simulation-

ensembles as well as a historical all-forcings simulation-ensemble, with the applicable ERF 

determined from a further set of simulation-ensembles, estimated historical composite ERF to 

have transient and equilibrium efficacies below one; we discuss these findings below. 

However, they found that these shortfalls were due to solar, volcanic, ozone and (for 

equilibrium efficacy) WMGG ERF having an efficacy below one, with aerosol ERF having an 

efficacy of 1.0. Other single forcing simulation studies also indicate that aerosol ERF does not 

have an efficacy exceeding one (Hansen et al. 2005; Ocko et al. 2014; Paynter and Frölicher 

2015; Forster 2016). Although Rotstayn et al. (2015) obtained an aerosol ERF efficacy 

estimate of 1.4 by regressing surface temperature change over the historical period against 

estimated aerosol ERF in an ensemble of CMIP5 models, their result is strongly model-

ensemble dependent. Excluding an outlier model (FGOALS-s2) makes their efficacy estimate 

statistically indistinguishable from one.  

Complicating matters, for aerosols the forcing and response may vary significantly 

with climate state (Miller et al. 2014; Nazarenko et al. 2017).Shindell (2014) (and thereby 

Kummer and Dessler 2014) and Marvel et al. (2016) estimated aerosol ERF using model 

simulations in which the climate state differed from that when composite historical forcing 

was applied, so their results are unreliable in the presence of aerosol forcing or response 

climate-state dependency. As Shindell differenced results from forced simulations involving 

different climate states and forcing combinations, his findings (and thereby Kummer and 

Dessler's) are particularly susceptible to bias from aerosol forcing or response climate-state 

dependency.  

Efficacy estimates based purely on composite historical forcing may be more reliable. 

Marvel et al. estimated the efficacy (their transient efficacy) of composite historical 

instantaneous radiative forcing at the tropopause (iRF, an approximation to RF) as 1.00. 

Although their corresponding ERF (transient) efficacy estimate, which is more relevant to 

energy-budget studies, was 0.88, they derived it by comparing year-2000 forcing with mean 

1996−2005 temperatures, which does not produce a satisfactory estimate. In GISS-E2-R, year 

2000 forcing was higher than the 1996−2005 mean, and surface temperature in the second 
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half of the 1990s was still depressed by recovery from the Pinatubo eruption (Table S1). 

Recalculating efficacy using warming over 2000−2005, scaling year-2000 historical ERF by 

the ratio of average 2000−2005 iRF to year-2000 iRF, raises the Marvel et al. (transient) 

efficacy of historical ERF to 1.00 (Supplementary Material: S3). Consistent with this, Hansen 

et al. (2005) estimated (transient) efficacy relative to historical ERF derived by regression as 

marginally above one.  

Marvel et al. also derived a new efficacy metric, equilibrium efficacy, that accounts 

for variation in heat uptake efficiency between forcings. However, their methods also bias 

downwards their historical forcing equilibrium efficacy estimates. Recalculating equilibrium 

efficacy for historical ERF using the same mean 2000−2005 historical ERF value as for our 

re-estimation of transient efficacy, and the full TOA radiative imbalance rather than just its 

ocean heat uptake component, raises their 0.76 equilibrium efficacy estimate to 1.04 when the 

comparison is made with the response to CO2-only forcing over a similar time period 

(Supplementary Material: S3).  

Hence we conclude that assertions that historical forcing has an efficacy below one 

appear to be unjustified, so that the assumption of λ being independent of forcing composition 

holds for the change in composite forcing over the historical period (of which the volcanic 

component is negligible). 

d. Global incompleteness of the surface temperature dataset  

In principle a globally-complete surface temperature dataset is preferable, although the 

potential inaccuracy introduced by infilling might be greater than estimated, particularly in the 

early part of the record. Even during the well-observed satellite period, it is not invariably true 

that infilling is beneficial. ECMWF (2015) gives a global-mean comparison over 1979−2014 

of 2 m air temperature for land and SST for ocean per ERA-interim (Dee et al. 2011) – 

generally considered the best reanalysis dataset – both on a globally-complete basis and with 

monthly coverage reduced to match that of HadCRUT4. The 1979−2014 linear trend of their 

globally-complete estimates was closely in line with that based on HadCRUT4 coverage 

(which equaled the actual HadCRUT4v5 trend), whereas Had4_krig_v2 shows a 9% higher 

trend over that period.  

Nevertheless, it is more appropriate to use sensitivity estimates based on globally-

complete surface temperature data for comparisons with CMIP5 model ECS and TCR values 

and others based on globally-complete data. We use only our Had4_krig_v2-based estimates 

for doing so. 

e. Use of anomaly temperatures and SST versus air temperature over the oceans 

Using CMIP5 model simulations, it has been claimed (Cowtan et al. 2015; Richardson 

et al. 2016) that even a globally-complete surface temperature estimate like Had4_krig_v2 

may understate warming in global mean near-surface air temperature due to its use of SST 

over the ice-free ocean and of anomaly temperatures. Richardson et al. (2016) estimated a 
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historical bias of 7−9% if real-world behavior matched that of the average CMIP5 model. 

They refer to the related discussion by Cowtan et al. (2015), who estimated an average bias of 

7% for historical warming (their Table S1, averaging all periods with >0.2 K warming). Two 

causes each contributed approximately half of the 7% bias. 

First, Cowtan et al. argued that temperature changes in areas becoming free of sea ice, 

as it shrinks, are understated due to the use of anomalies. However, CMIP5 model simulations 

cannot provide a realistic estimate of any resulting bias in historical warming, since most 

models simulate strong warming in Antarctica and a reduction in surrounding sea ice, whereas 

little Antarctic warming has occurred and sea ice there has actually increased. Cowtan and 

Way (2014: update) found that in reality the effect on temperature estimates of assuming sea 

ice extent was fixed (in which case no bias arises) was minimal.  

Secondly, Cowtan et al. argued that in CMIP5 models SST (tos) warms less than 

ocean near-surface air temperature (tas), resulting on average in surface temperature warming 

less when SST rather than marine air temperature is used. However, CMIP5 models generally 

treat the ocean's skin temperature, which determines its interactions with the atmosphere, as 

equal to the top model ocean layer, typically 10 m deep, so that tas – tos really reflects the 

difference between model-simulated air temperature and ocean skin temperature. Even if the 

excess of near-surface air temperature increase over ocean skin temperature increase in 

CMIP5 models is realistic, SST, which is typically measured at 5−10 m deep, is significantly 

different from skin temperature and may increase faster. Observations provide alternative 

evidence. The HadNMAT2 (Kent et al. 2013) dataset shows a lower global trend in near-

surface marine air temperature over its 1880−2010 record than does HadSST3.1.1.0, the sea-

surface temperature component of HadCRUT4v5, although possible inhomogeneities mean 

this result is uncertain. Moreover, the 1979−2014 trend in the globally-complete ERA-interim 

data increases by just 2% when using background 2 m marine air temperature (calculated by 

the reanalysis AGCM) rather than SST (ECMWF 2015).
7
 Over 1979 to July 2016 – a period 

in which the bulk of the historical period warming and sea-ice reduction occurred – ERA-

interim shows marginally greater warming when using background marine air temperature 

rather than analyzed SST, but the trend is 0.17 K/decade in both cases – and lower than the 

0.18 K/decade per both the SST-using HadCRUT4v5 and Had4_krig_v2 datasets (Simmons 

et al. 2017).  

                                                        
7 Digitizing the complete global averages data in the ECMWF (2015) bar graph gives a 1979−2014 trend of 

0.158 K decade−1, or 0.159 K decade−1 when masked to HadCRUT4 coverage. This data is a blend of 2 m 

temperature over land and SST over ocean (Paul Berrisford, ECMWF, pers. comm. 2016). A 2% higher 

1979−2014 trend of 0.161 K decade−1 was computed using data from 

https://climate.copernicus.eu/sites/default/files/repository/Temp_maps/Data_for_month_8_2017_plot_3.txt. That 

data is for surface air temperature anomalies. Both sets of data have been adjusted by ECMWF for 

inhomogeneities in their source of analyzed SST. 



 

28 

 

On balance the observational evidence points to past warming in global mean 

temperature when using near-surface air temperature everywhere being little different from 

when blending it with SST over the ocean. The evidence from comparing ERA-interim trends 

using marine air temperature and using SST, which points to approximately 2% slower 

warming when using SST, is perhaps most credible. However, this excess is tiny, and could 

be biased high by the reanalysis AGCM's behavior.   

We conclude that any underestimation of past global near-surface air temperature 

warming arising from blending SST data over the ice-free ocean with near-surface air 

temperature elsewhere, as in Had4_krig_v2, is sufficiently small to be ignored (and could 

even be negative). While incorporating an extra, multiplicative, uncertainty with a standard 

deviation of 4% in all the Had4_krig_v2 ΔT values might nevertheless be justified, it would 

not alter any ECS or TCR 5-95% uncertainty range by more than ±0.01 K.  

f. ECS versus ECShist 

The possibility that energy-budget climate sensitivity estimates based on changes over 

the historical period, which measure λ over that period and assume it is invariant (and which 

thus actually reflect an effective climate sensitivity, ECShist), might differ from ECS was 

brought up in section 2. ECShist can be quantified fairly accurately in AOGCMs, their ECS 

estimated from centennial model response in abrupt4xCO2 simulations, and an ECS-to-

ECShist ratio derived.  

We have calculated an ECS-to-ECShist ratio for an ensemble of 31 CMIP5 models, 

deriving ECS by Gregory-plot regression (Gregory et al. 2004) over years 21−150 (Armour 

2017) and taking the mean ECShist estimate from three methods that access different 

realisations of model internal variability (Supplementary Material: S4). The three methods 

provide almost identical ensemble-mean ECShist estimates (Table S2). Over the entire 

ensemble, ECS varies between 0.91⤬ and 1.52⤬ ECShist, the median ratio being 1.095, very 

close to the 1.096 ratio estimated by Mauritsen and Pincus (2017). Armour (2017) and 

Proistosescu and Huybers (2017) reported higher ECS-to-ECShist ratios (respectively 1.26 

ensemble-mean and 1.34 ensemble-median), but we find their estimation methods less 

satisfactory, causing quantifiable biases.  

A reconciliation of the mean ECS-to-ECShist ratio for CMIP5 per Armour (2017) 

(A17) to our 1.095 ratio is as follows. We provide a similar reconciliation for Proistosescu 

and Huybers (2017) in the Supplementary Material (S5).  

1. A17, in calculating ECShist values (there termed ECSinfer), estimated 2 CO2F   from the y-

axis intercept when regressing ΔN against ΔT over years 1−5 of abrupt4xCO2 

simulations. Doing so does not provide an unbiased ERF basis estimate of 2 CO2F  , since 

during year one CO2 top-of-atmosphere forcing is moving from its instantaneous value 

towards its ERF value as the stratosphere, troposphere and other annual- or shorter-

timescale climate system components adjust to the imposed forcing independently of 



 

29 

 

surface temperature increase. For example, stratospheric adjustment, which reduces 

forcing, takes several months to complete. When regressing over only five years, the 

inclusion of year one data significantly increases the mean 
2 CO2F 

 estimate, resulting in 

lower ECShist estimates. We regress over years 2−10, avoiding bias from non-fully 

adjusted year one data; time-variation of λ is insignificant in the first decade. A17's 

ensemble-mean ECS-to-ECShist ratio calculated using regression over years 2−10 to 

determine 
2 CO2F 

, but otherwise using his methods, would be 1.215. 

2. A17 did not allow for the slightly faster than logarithmic relationship of CO2 forcing 

to concentration (Etminan et al. 2016). There is no reason to think that CO2 radiative 

forcing code in CMIP5 models does not, on average, reflect that relationship – the 

logarithmic relationship given in AR5 was known only to be an approximation. The 

effect is a 0.7% upwards bias in A17's mean ECShist estimate (which is based on ΔN 

and ΔT values in years 85−115 of 1pctCO2 simulations) but a 4.6% upwards bias in 

A17's mean ECS estimate (which is based on abrupt4xCO2 simulations). Adjusting 

for this bias (3.9% net) reduces A17's ECS-to-ECShist ratio estimate further, to 1.170. 

3. A17 estimate ECS using OLS regression of annual-mean years 21−150 abrupt4xCO2 

ΔN and ΔT values, but ΔT as well as ΔN is affected by internal variability and their 

fluctuations are generally weakly correlated. Where the regressor variable contains 

errors, OLS regression underestimates the slope coefficient (Deming, 1943). Using 

Deming regression to derive unbiased ECS estimates (Supplementary Material S4), 

A17's ensemble-mean ECS estimate is 2.0% lower than when using OLS regression. 

Adjusting for this bias further reduces A17's ensemble-mean ECS-to-ECShist ratio, to 

1.146. 

4. We use three different methods to estimate ECShist, one being A17's method, 

averaging their results. For A17's ensemble our mean ECShist estimate is the same as 

when using only A17's method, so using our ECShist estimation basis its mean ECS-to-

ECShist ratio is also 1.146. 

5. A17 quote a mean ECS-to-ECShist ratio, but since the distribution is skewed it is 

appropriate to use the median, a robust and parameterization-independent measure, as 

the central estimate. The ensemble-median A17 ECS-to-ECShist ratio, using our 

ECShist calculation basis, is 1.115, lower than the 1.146 mean ECS-to-ECShist ratio. 

6. A17 use a smaller ensemble of CMIP5 models (21 rather than our 31), which 

disproportionately excludes models with low ECS-to-ECShist ratios. For our ensemble, 

the median ECS-to-ECShist ratio using our calculation basis is 1.095.
8
  

                                                        
8
 If our ensemble were equally weighted by modeling center, the median ECS-to-ECShist ratio would be 

1.082. 
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The ECS-to-ECShist ratio in CMIP5 models should vary positively with ECShist 

(Armour 2017); it tends to do so and is generally moderate (≤ 1.16) where ECShist is under 2.9 

K, although a linear fit has little explanatory power. We derive a probabilistic estimate for 

ECS that reflects behavior of CMIP5 models by scaling our globally-complete Had4_krig_v2-

based energy-budget ECShist estimate using CMIP5 model ECS-to-ECShist ratios, binned (0.2 

K width) by ECShist. We allocate the million sample observationally-based ECShist estimates 

between the bins and scale them by the ECS-to-ECShist ratios of models in each bin, taking 

models from the nearest bin(s) where the ECShist bin is empty and allocating samples falling 

in each bin equally between the applicable models. The resulting ECS median estimate is 1.76 

K (5–95%:1.2–3.1 K). Scaling the median of our energy-budget ECShist estimate by the 1.06 

median ECS-to-ECShist ratio for the 14 CMIP5 models with an ECShist value within its 

1.15−2.7 K uncertainty range likewise produces a 1.76 K median ECS estimate. A 3.1 K 95% 

uncertainty bound for ECS also results if the million sample Had4_krig_v2-based ECShist 

estimates are scaled using the CMIP5 ensemble-median ECS-to-ECShist ratio of 1.095 with 

normally-distributed uncertainty added to give a 0.79–1.40 5−95% range.   

The upper bound generated for ECS is not necessarily robust; the joint distribution of 

ECS and ECShist in CMIP5 models may not be a realistic enough measure of uncertainty in 

the ECS-to-ECShist ratio, nor is not known how accurately ECS can be estimated from 150 

year abrupt4xCO2 simulations. If the 95% uncertainty bound for ECShist estimated using 

Had4_krig_v2 data, 2.7 K, were scaled up by the highest ECS-to-ECShist ratio among CMIP5 

models with an ECShist below 2.85 K, the ECS upper bound would be 3.4 K. However, much 

of any excess of ECS over ECShist would take centuries to be realised in surface warming, 

with little effect on warming in 2100. Twenty-first century warming arising from future 

forcing increases will largely be determined by TCR, with any excess of ECS over ECShist 

being almost irrelevant. Even if the highest ECS-to-ECShist ratio found in CMIP5 models 

applied, warming in 2100 due to the past increase in forcing would be only 0.1 K greater than 

if ECS equaled ECShist (Mauritsen and Pincus 2017). 

Observationally-based evidence of the ECS-ECShist relationship can be obtained by 

comparing historical-period energy budget sensitivity estimates with those based on past 

changes between equilibrium climate states (implying zero N ), using proxy paleoclimate 

data. However, uncertainties in forcing and temperature changes are considerably greater for 

past periods, particularly for more remote periods, and climate feedbacks might have been 

considerably different then. The most recent and best studied such change is that from the last 

glacial maximum (LGM) to the preindustrial Holocene. It is not obvious that ECS for the 

LGM transition should be lower than from preindustrial conditions, and an energy-budget 

approach has long been applied to estimate ECS from this period. Although Goelzer et al. 

(2011) found that the LGM-transition ECS could be reduced by melting ice sheets, the effect 

was minimal when estimated ECS was below 2.5 K.  

Reasonably thorough proxy-based estimates of changes in surface temperature (Annan 

et al. 2013: 4.0 K; Friedrich et al. 2016: 5.0 K) and forcings (Kohler et al. 2010: total 9.5 
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Wm
−2

) are available for the LGM transition. These values imply, using (4), an ECS estimate 

of 1.76 K, (averaging the two surface temperature increase estimates and taking 2 CO2F   per 

AR5, since the WMGG forcings were derived using AR5 formulae), in line with the median 

obtained by scaling this study's ECShist estimate.  

8.    Conclusions 

Using updated and revised data, we have derived ECShist and TCR estimates that are much 

better constrained, and slightly lower when using the same surface temperature dataset 

(HadCRUT4), than those in the predecessor LC15 study: 1.50 K median (5−95%: 1.05−2.45 

K) for ECShist and 1.20 K median (5−95%: 0.9−1.7 K) for TCR. Using infilled, globally-

complete temperature data (Had4_krig_v 2) slightly increases the new estimates, to a median 

of 1.66 K for ECShist (5−95%: 1.15−2.7 K) and 1.33 K for TCR (5−95%:1.0−1.90 K). We 

have also shown that various concerns that have been raised about the accuracy of historical 

period energy budget climate sensitivity estimation are misplaced. We assess nil bias from 

either non-unit forcing efficacy or varying SST warming patterns, and that any downwards 

estimation bias when using blended infilled surface temperature data is trivial. We find that 

high CMIP5 model-based estimates of the ratio of ECS to ECShist, the proxy for ECS that 

historical period based studies estimate, become far lower when calculated more 

appropriately. By using the ECS-to-ECShist ratios that we calculate for CMIP5 models to scale 

our Had4_krig_v2-based ECShist probability distribution, we derive a median estimate for 

ECS of 1.76 K (5−95%: 1.2−3.1 K). 

Relative to LC15, most of the improvement in ECS estimation precision is due to 

higher greenhouse gas concentrations when using data to 2016 rather than 2011 and to the 

revisions to estimated CH4 and post-1990 aerosol forcing. Forcing uncertainty remains the 

dominant contributor to the widths of the ECS and TCR ranges, and reducing the uncertainty 

in aerosol forcing would narrow them much more than reducing uncertainty in any other 

forcing component. 

It is notable that the best estimates for both ECS and TCR are almost identical across 

all four combinations of base period and final period. This is consistent with a modest 

influence of shorter-term climate system internal variability and of measurement/estimation 

error on energy budget sensitivity estimates. The estimates using the 1869−1882 base period 

and 2007−2016 final period combination are preferred; they have the highest T  and F  

values and as a result are best constrained. Moreover, with the Argo ocean-observing network 

fully operational throughout 2007–2016, there is also higher confidence in the reliability of 

the ocean heat uptake estimate when using that final period. Although HadCRUT4 

observational coverage was modest during 1869−1882, the fact that TCR estimation is very 

similar using the higher-coverage 1930−1950 base period gives confidence in the ECS and 

TCR estimates using the former base period.  
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Implied value of each variable if the other 

two each equal their median value 

ΔT [K] 
2 CO2/F F   2 CO2/N F   

Parameter and lowest inconsistent value in 

CMIP5 model ensemble 
   

ECShist: 2.89 K 1.54 0.43 0.36 

TCR: 1.91 K 1.26 0.46 n/a 

Observational 5-95% range 0.73–1.03 0.49–0.83 0.06–0.21 

Table 5 Simplified, one-at-a-time analysis of data values implied by statistically inconsistent 

CMIP5 models. The first two rows of data show the values of each of T , 2 CO2/F F   and 

2 CO2/N F   implied by the stated ECShist and TCR values, if the remaining two of those variables 

each took its median value. Those ECShist and TCR values are, for each parameter, the lowest for 

any CMIP5 model in the ensemble that is above the 95% uncertainty bounds given by the 

preferred (1859–82 to 2007–16) estimates from the main analysis using the globally-complete 

Had4_krig_v2 dataset. The final row shows the observationally-derived uncertainty ranges the 

three variables.  Best estimates and uncertainty ranges are derived from the same one million 

samples used for the main statistical analysis. 

Over half of 31 CMIP5 models have best-estimate ECShist values of 2.9 K or higher, 

exceeding by over 7% our 2.7 K observationally-based 95% uncertainty bound using infilled 

temperature data. Moreover, a majority of the models have best-estimate TCR values above 

our corresponding 1.9 K 95% bound. A majority of the models also have best-estimate ECS 

values above our 3.1 K 95% bound. A simplified analysis (Table 5) based on considering in 

turn uncertainty only in T , 2 CO2/F F   and 2 CO2/N F   (thus taking into account 

uncertainty in 2 CO2F  ), confirms that in each case the lowest CMIP5 model TCR and ECShist 

values that we find to be inconsistent with observed warming imply, implausibly, that T , 

2 CO2/F F   and 2 CO2/N F   have values outside their uncertainty ranges. 

The implications of our results are that high best estimates of ECShist, ECS and TCR 

derived from a majority of CMIP5 climate models are inconsistent with observed warming 

during the historical period (confidence level 95%). Moreover, our median ECS and TCR 

estimates using infilled temperature data imply multicentennial or multidecadal future 

warming under increasing forcing of only 55−70% of the mean warming simulated by CMIP5 

models.  
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